Background: Subjective cognitive decline (SCD) is associated with increased risk of developing Alzheimer's disease (AD). However, the underlying mechanisms for this association remain unclear. Neuroimaging studies suggest the earliest AD-related changes are large-scale network disruptions, beginning in the posterior default mode (pDMN) network.
Objective: To examine the association between SCD and pDMN network connectivity with medial temporal lobe (MTL) regions using resting-state functional magnetic resonance imaging.
Methods: Forty-nine participants with either SCD (n = 23, 12 females; mean age: 70.7 (5.5)) or who were cognitively unimpaired (CU; n = 26, 16 females, mean age: 71.42 (7.3)) completed the Memory Functioning Questionnaire, a measure of subjective memory, and underwent resting state functional MRI at 3 Tesla. Functional connectivity between the posterior cingulate cortex (PCC), as the key pDMN node, and MTL regions were compared between SCD and CU groups. Further, the association between pDMN-MTL connectivity and the Frequency of Forgetting subscale of the Memory Functioning Questionnaire was examined.
Results: Connectivity between the PCC-MTL was observed in the CU group but was absent in SCD (t(47) = 2.69, p = 0.01). Across all participants, self-perception of frequency of forgetting, but not objective memory, was strongly correlated with connectivity between the PCC-left parahippocampal gyrus (r = 0.43, p = 0.002).
Conclusion: These findings support the hypothesis that increased AD risk in SCD may be mediated by disrupted pDMN-parahippocampal connectivity. In addition, these findings suggest that frequency of forgetting may serve as a potential biomarker of SCD due to incipient AD.
Keywords: Alzheimer’s disease; default mode network; depression; functional connectivity; memory functioning questionnaire; parahippocampal gyrus; posterior cingulate cortex; resting state functional magnetic resonance imaging; subjective cognitive decline; subjective memory.