An acquired dysregulation of airway secretion is likely involved in the pathophysiology of chronic bronchitis and chronic obstructive pulmonary disease (COPD). Nowadays, it is widely known that several kinds of long-acting bronchodilators reduce the frequency of COPD exacerbations. However, limited data are available concerning the complementary additive effects on airflow obstruction. Using an optical method and a selective pH indicator, we succeeded in evaluating the gland secretion rate and the pH in swine tracheal membrane. A physiologically relevant concentration of acetylcholine (ACh) 100 nM induced a gradual increase in the amount of gland secretion. Lipopolysaccharides (LPS) accelerated the ACh-induced secretory responses up to around threefold and lowered the pH level significantly. Long-acting β2-agonists (LABAs) including indacaterol (IND), formoterol, and salmeterol restored the LPS-induced changes in both the hypersecretion and acidification. The subsequent addition of the long-acting muscarine antagonist, glycopyrronium, further increased the pH values. Two different inhibitors for cystic fibrosis transmembrane conductance regulator (CFTR), NPPB and CFTRinh172, abolished the IND-mediated pH normalization in the presence of both ACh and ACh + LPS. Both immunofluorescence staining and western blotting analysis revealed that LPS downregulated the abundant expression of CFTR protein. However, IND did not restore the LPS-induced decrease in CFTR expression on Calu-3 cells. These findings suggest that the activation of cAMP-dependent HCO3- secretion through CFTR would be partly involved in the IND-mediated pH normalization in gland secretion and may be suitable for the maintenance of airway defense against exacerbating factors including LPS.
Keywords: Bicarbonate; CFTR; Calu-3; LABA; Submucosal gland.