Microtubule organization across cell types and states

Curr Biol. 2021 May 24;31(10):R506-R511. doi: 10.1016/j.cub.2021.01.042.

Abstract

Encircling and traversing the cell are architectural struts and dynamic intracellular highways made of cylindrical polymers called microtubules. Built from structurally asymmetric subunits of αβ-tubulin heterodimers, microtubules have an inherent structural polarity with a slow-growing minus end and a comparatively dynamic plus end that grows and shrinks. Thus, a key feature of microtubules is that each polymer is polarized, allowing for the execution of cellular tasks that are directional in nature. For example, microtubules build polarized highways allowing directional intracellular transport, generate directional force such as in chromosome alignment and segregation, provide structural support for cell shape, and assemble into highly ordered polar structures like centrioles and cilia. The output of these microtubule-based functions is the performance of different tasks, including establishment and maintenance of cellular polarity, secretion and absorption, cell-cell communication, migration, mechanical resiliency, and mitosis. Different cells accomplish these functions by using distinct sites within the cell called microtubule-organizing centers (MTOCs) to build cell-specific microtubule arrangements. While the specific requirement for microtubules in many in vivo cell types is unknown, disrupting even a subset of microtubule-supported functions is often lethal and is associated with many diseases (e.g., cancer and neuropathies), suggesting that specific patterns of microtubule organization are likely important for cellular function in vivo. This Primer focuses on how differentiated animal and plant cells use distinct MTOCs to generate specific microtubule arrangements, how those arrangements support cellular functions, and how cells rearrange their microtubules to accommodate changing cellular tasks.

MeSH terms

  • Animals
  • Centrioles
  • Microtubule-Organizing Center*
  • Microtubules
  • Mitosis
  • Tubulin*

Substances

  • Tubulin