Spatial metabolomics is an emerging field of omics research that has enabled localizing metabolites, lipids, and drugs in tissue sections, a feat considered impossible just two decades ago. Spatial metabolomics and its enabling technology-imaging mass spectrometry-generate big hyper-spectral imaging data that have motivated the development of tailored computational methods at the intersection of computational metabolomics and image analysis. Experimental and computational developments have recently opened doors to applications of spatial metabolomics in life sciences and biomedicine. At the same time, these advances have coincided with a rapid evolution in machine learning, deep learning, and artificial intelligence, which are transforming our everyday life and promise to revolutionize biology and healthcare. Here, we introduce spatial metabolomics through the eyes of a computational scientist, review the outstanding challenges, provide a look into the future, and discuss opportunities granted by the ongoing convergence of human and artificial intelligence.
Keywords: artificial intelligence; imaging mass spectrometry; spatial metabolomics.