An Ensemble of U-Net Models for Kidney Tumor Segmentation With CT Images

IEEE/ACM Trans Comput Biol Bioinform. 2022 May-Jun;19(3):1387-1392. doi: 10.1109/TCBB.2021.3085608. Epub 2022 Jun 3.

Abstract

We present here the Arkansas AI-Campus solution method for the 2019 Kidney Tumor Segmentation Challenge (KiTS19). Our Arkansas AI-Campus team participated the KiTS19 Challenge for four months, from March to July of 2019. This paper provides a summary of our methods, training, testing and validation results for this grand challenge in biomedical imaging analysis. Our deep learning model is an ensemble of U-Net models developed after testing many model variations. Our model has consistent performance on the local test dataset and the final competition independent test dataset. The model achieved local test Dice scores of 0.949 for kidney and tumor segmentation, and 0.601 for tumor segmentation, and the final competition test earned Dice scores 0.9470 and 0.6099 respectively. The Arkansas AI-Campus team solution with a composite DICE score of 0.7784 has achieved a final ranking of top fifty worldwide, and top five among the United States teams in the KiTS19 Competition.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Humans
  • Image Processing, Computer-Assisted*
  • Kidney Neoplasms* / diagnostic imaging
  • Tomography, X-Ray Computed