The principles and practice of a methodology of cell cycle analysis that allows the estimation of the absolute length (in units of time) of all cell cycle stages (G1, S, and G2) are detailed herein. This methodology utilizes flow cytometry to take full advantage of the excellent stoichiometric properties of click chemistry. This allows detection, via azide-fluorochrome coupling, of the modified deoxynucleoside 5-ethynyl-2'-deoxyuridine (EDU) incorporated into replicated DNA through incremental pulsing times. This methodology, which we designated as EdU-Coupled Fluorescence Intensity (E-CFI) analysis, can be applied to cell types with very distinct cell cycle features, and has shown excellent agreement with established techniques of cell cycle analysis. Useful modifications to the original protocol (Pereira et al., Oncotarget, 8:40514-40,532, 2017) have been introduced to increase flexibility in data collection and facilitate data analysis.
Keywords: Absolute length (units of time); Cell cycle phases; E-CFI; Flow cytometry.