Pseudomonas savastanoi pv. phaseolicola causes halo blight disease in the common bean Phaseolus vulgaris. The bacterium invades the leaf apoplast and uses a type III secretion system to inject effector proteins into a bean cell to interfere with the bean immune system. Beans counter with resistance proteins that can detect effectors and coordinate effector-triggered immunity responses transduced by salicylic acid, the primary defense hormone. Effector-triggered immunity halts bacterial spread, but its direct effect on the bacterium is not known. In this study, mass spectrometry of bacterial infections from immune and susceptible beans revealed that immune beans inhibited the accumulation of bacterial proteins required for virulence, secretion, motility, chemotaxis, quorum sensing, and alginate production. Sets of genes encoding these proteins appeared to function in operons, which implies that immunity altered the coregulated genes in the bacterium. Immunity also reduced amounts of bacterial methylglyoxal detoxification enzymes and their transcripts. Treatment of bacteria with salicylic acid, the plant hormone produced during immunity, reduced bacterial growth, decreased gene expression for methylglyoxal detoxification enzymes, and increased bacterial methylglyoxal concentrations in vitro. Increased methylglyoxal concentrations reduced bacterial reproduction. These findings support the hypothesis that plant immunity involves the chemical induction of adverse changes to the bacterial proteome to reduce pathogenicity and to cause bacterial self-toxicity.
Keywords: Phaseolus vulgaris; Pseudomonas savastanoi; mass spectrometry; proteome; toxicity.