A machine learning approach to screen for preclinical Alzheimer's disease

Neurobiol Aging. 2021 Sep:105:205-216. doi: 10.1016/j.neurobiolaging.2021.04.024. Epub 2021 May 4.

Abstract

Combining multimodal biomarkers could help in the early diagnosis of Alzheimer's disease (AD). We included 304 cognitively normal individuals from the INSIGHT-preAD cohort. Amyloid and neurodegeneration were assessed on 18F-florbetapir and 18F-fluorodeoxyglucose PET, respectively. We used a nested cross-validation approach with non-invasive features (electroencephalography [EEG], APOE4 genotype, demographic, neuropsychological and MRI data) to predict: 1/ amyloid status; 2/ neurodegeneration status; 3/ decline to prodromal AD at 5-year follow-up. Importantly, EEG was most strongly predictive of neurodegeneration, even when reducing the number of channels from 224 down to 4, as 4-channel EEG best predicted neurodegeneration (negative predictive value [NPV] = 82%, positive predictive value [PPV] = 38%, 77% specificity, 45% sensitivity). The combination of demographic, neuropsychological data, APOE4 and hippocampal volumetry most strongly predicted amyloid (80% NPV, 41% PPV, 70% specificity, 58% sensitivity) and most strongly predicted decline to prodromal AD at 5 years (97% NPV, 14% PPV, 83% specificity, 50% sensitivity). Thus, machine learning can help to screen patients at high risk of preclinical AD using non-invasive and affordable biomarkers.

Keywords: EEG; Machine learning; Multimodal; Neurodegeneration; Preclinical Alzheimer's disease.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Alzheimer Disease / diagnosis*
  • Alzheimer Disease / genetics
  • Alzheimer Disease / pathology
  • Apolipoprotein E4 / genetics
  • Biomarkers*
  • Cohort Studies
  • Electroencephalography
  • Female
  • Follow-Up Studies
  • Genotype
  • Hippocampus / pathology
  • Hippocampus / physiopathology
  • Humans
  • Machine Learning*
  • Magnetic Resonance Imaging
  • Male
  • Mass Screening / methods*
  • Nerve Degeneration
  • Neuropsychological Tests
  • Positron-Emission Tomography

Substances

  • Apolipoprotein E4
  • Biomarkers