Multiple reports suggest that calcium-sensing receptors (CaSRs) are involved in calcium homeostasis, osmoregulation, and/or salinity sensing in fish (Loretz 2008, Herberger and Loretz 2013). We have isolated three unique full-length CaSR cDNAs from Atlantic salmon (Salmo salar) kidney that share many features with other reported CaSRs. Using anti-CaSR antibodies and PCR primers specific for individual salmon CaSR transcripts we show expression in osmoregulatory, neuroendocrine and sensory tissues. Furthermore, CaSRs are expressed in different patterns in salmon tissues where mRNA and protein expression are modified by freshwater or seawater acclimation. For example, in seawater, CaSR mRNA and protein expression is increased significantly in kidney as compared to freshwater. Electrophysiological recordings of olfactory responses produced upon exposure of salmon olfactory epithelium to CaSR agonists suggest a role for CaSRs in chemoreception in this species consistent with other freshwater, anadromous, and marine species where similar olfactory responses to divalent and polyvalent cations have been reported. These data provide further support for a role of CaSR proteins in osmoregulatory and sensory functions in Atlantic salmon, an anadromous species that experiences a broad range of environmental salinities in its life history.
Keywords: Atlantic salmon; Calcium-sensing receptor; Olfaction.