Chronic cholestatic liver diseases including primary sclerosing cholangitis (PSC) present a complex spectrum with regards to the cause, age of manifestation and histopathological features. Current treatment options are severely limited primarily due to a paucity of model systems mirroring the disease. Here, we describe the Keratin 5 (K5)-Cre; Klf5fl/fl mouse that spontaneously develops severe liver disease during the postnatal period with features resembling PSC including a prominent ductular reaction, fibrotic obliteration of the bile ducts and secondary degeneration/necrosis of liver parenchyma. Over time, there is an expansion of Sox9+ hepatocytes in the damaged livers suggestive of a hepatocyte-mediated regenerative response. We conclude that Klf5 is required for the normal function of the hepatobiliary system and that the K5-Cre; Klf5fl/fl mouse is an excellent model to probe the molecular events interlinking damage and regenerative response in the liver.
Keywords: Animal model; Knock-out mice; Liver; PSC; Transcription factor.
© 2021. The Author(s).