Heteroatoms doped carbon catalysts have been intensively studied to take the place of Platinum based catalysts for oxygen reduction reaction (ORR) because of their ideal catalytic activity. Herein, the microporous-mesoporous carbon material catalysts doped with Fe, N, S and F were synthesized through a plain one-pot pyrolysis method with ionic liquid 1-butyl-3-methyli-midazolium bis((trifluoromethyl)sulfonyl)imide ([Bmim][TF2N]) and melamine as precursors. Electrochemical analysis shows that the ORR activity and stability of the obtained catalysts are obviously better than Pt/C under alkaline condition. Meanwhile, the catalysts show similar ORR activity and much better durability in 0.1 M HClO4comparing to Pt/C. Moreover, the tolerance of methanol in both basic and acid solutions is greatly better than Pt/C. The high activity is ascribed to the large specific surface area, porous structure and the synergistic effect between S, F, pyridine N, graphite N and Fe-Nx. The high stability possibly comes from the appropriate graphitization and the carbon-coating effect. The strategy proposed here has the advantages of facile, low cost, high efficiency and easy large-scale production, which provides new ideas for the preparation of high-performance Fe-N-C electrocatalysts.
Keywords: Co-doping carbon materials; Fe–N–C electrocatalysts; heteroatoms; ionic liquids; oxygen reduction reaction.
© 2021 IOP Publishing Ltd.