Probing the Spin-Orbit Time Delay of Multiphoton Ionization of Kr by Bicircular Fields

Phys Rev Lett. 2021 Jun 4;126(22):223001. doi: 10.1103/PhysRevLett.126.223001.

Abstract

We study multiphoton ionization of Kr atoms by circular 400-nm laser fields and probe its photoelectron circular dichroism with the weak corotating and counterrotating circular fields at 800 nm. The unusual momentum- and energy-resolved photoelectron circular dichroisms from the ^{2}P_{1/2} ionic state are observed as compared with those from ^{2}P_{3/2} ionic state. We identify an anomalous ionization enhancement at sidebands related to the ^{2}P_{1/2} ionic state on photoelectron momentum distribution when switching the relative helicity of the two fields from corotating to counterrotating. By performing the two-color intensity-continuously-varying experiments and the pump-probe experiment, we find a specific mixed-photon populated resonant transition channel in counterrotating fields that contributes to the ionization enhancement. We then probe the time delay between the two spin-orbit coupled ionic states (^{2}P_{1/2} and ^{2}P_{3/2}) using bicircular fields and reveal that the resonant transition has an insignificant effect on the relative spin-orbit time delay.