Background: Dosing of replacement therapy with factor VIII concentrate in patients with haemophilia A in the perioperative setting is challenging. Underdosing and overdosing of factor VIII concentrate should be avoided to minimise risk of perioperative bleeding and treatment costs. We hypothesised that dosing of factor VIII concentrate on the basis of a patient's pharmacokinetic profile instead of bodyweight, which is standard treatment, would reduce factor VIII consumption and improve the accuracy of attained factor VIII levels.
Methods: In this open-label, multicentre, randomised, controlled trial (OPTI-CLOT), patients were recruited from nine centres in Rotterdam, Groningen, Utrecht, Nijmegen, The Hague, Leiden, Amsterdam, Eindhoven, and Maastricht in The Netherlands. Eligible patients were aged 12 years or older with severe or moderate haemophilia A (severe haemophilia was defined as factor VIII concentrations of <0·01 IU/mL, and moderate haemophilia as 0·01-0·05 IU/mL), without factor VIII inhibitors, and planned for elective low or medium risk surgery as defined by surgical risk score. Patients were randomly assigned (1:1) using a web-based randomisation system and treatment minimisation, stratified by method of administration of factor VIII concentrate (continuous infusion vs bolus administration) and risk level of surgery (low and medium risk surgery), to the pharmacokinetic-guided or standard treatment group. The primary endpoint was total amount of infused factor VIII concentrate (IU per kg bodyweight) during perioperative period (from day of surgery up to 14 days after surgery). Analysis was by intention to treat and the safety analysis population comprised all participants who underwent surgery with factor VIII concentrate. This study is registered with the Netherlands Trial Registry, NL3955, and is now closed to accrual.
Findings: Between May 1, 2014, and March 1, 2020, 98 patients were assessed for eligibility and 66 were enrolled in the trial and randomly assigned to the pharmacokinetic-guided treatment group (34 [52%]) or the standard treatment group (32 [48%]). Median age was 49·1 years (IQR 35·0 to 62·1) and all participants were male. No difference was seen in consumption of factor VIII concentrate during the perioperative period between groups (mean consumption of 365 IU/kg [SD 202] in pharmacokinetic-guided treatment group vs 379 IU/kg [202] in standard treatment group; adjusted difference -6 IU/kg [95% CI -88 to 100]). Postoperative bleeding occurred in six (18%) of 34 patients in the pharmacokinetic-guided treatment group and three (9%) of 32 in the standard treatment group. One grade 4 postoperative bleeding event occurred, which was in one (3%) patient in the standard treatment group. No treatment-related deaths occurred.
Interpretation: Although perioperative pharmacokinetic-guided dosing is safe, it leads to similar perioperative factor VIII consumption when compared with standard treatment. However, pharmacokinetic-guided dosing showed an improvement in obtaining factor VIII concentrations within the desired perioperative factor VIII range. These findings provide support to further investigation of pharmacokinetic-guided dosing in perioperative haemophilia care.
Funding: Dutch Research Council (NWO)-ZonMw and Takeda.
Copyright © 2021 Elsevier Ltd. All rights reserved.