In this paper, we show that the essential Hsp90 co-chaperone Sgt1 is a member of a general protein quality control network that links folding and degradation through its participation in the degradation of misfolded proteins both in the cytosol and the endoplasmic reticulum (ER). Sgt1-dependent protein degradation acts in a parallel pathway to the ubiquitin ligase (E3) and ubiquitin chain elongase (E4), Hul5, and overproduction of Hul5 partly suppresses defects in cells with reduced Sgt1 activity. Upon proteostatic stress, Sgt1 accumulates transiently, in an Hsp90- and proteasome-dependent manner, with quality control sites (Q-bodies) of both yeast and human cells that co-localize with Vps13, a protein that creates organelle contact sites. Misfolding disease proteins, such as synphilin-1 involved in Parkinson's disease, are also sequestered to these compartments and require Sgt1 for their clearance.
Keywords: 26S proteasome; Hsp90; Hul5; Sgt1; aging; chaperone; protein quality control; proteostasis.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.