FRAX-Based Intervention Thresholds for Osteoporosis Treatment in Ukraine

J Osteoporos. 2021 Jun 10:2021:2043479. doi: 10.1155/2021/2043479. eCollection 2021.

Abstract

Objectives: Osteoporosis, in addition to its consequent fracture burden, is a common and costly condition. FRAX® is a well-established, validated, web-based tool which calculates the 10-year probability of fragility fractures. A FRAX model for Ukraine has been available since 2016 but its output has not yet been translated into intervention thresholds for the treatment of osteoporosis in Ukraine; we aimed to address this unmet need in this analysis.

Methods: In a referral population sample of 3790 Ukrainian women, 10-year probabilities of major osteoporotic fracture (MOF) and hip fracture separately were calculated using the Ukrainian FRAX model, with and without femoral neck bone mineral density (BMD). We used a similar approach to that first proposed by the UK National Osteoporosis Guideline Group, whereby treatment is indicated if the probability equals or exceeds that of a woman of the same age with a prior fracture.

Results: The MOF intervention threshold in females (the age-specific 10-year fracture probability) increased with age from 5.5% at the age of 40 years to 11% at the age of 75 years where it plateaued and then decreased slightly at age 90 (10%). Lower and upper thresholds were also defined to determine the need for BMD, if not already measured; the approach targets BMD measurements to those at or near the intervention threshold. The proportion of the referral populations eligible for treatment, based on prior fracture or similar or greater probability, ranged from 44% to 69% depending on age. The prevalence of the previous fracture rose with age, as did the proportion eligible for treatment. In contrast, the requirement for BMD testing decreased with age.

Conclusions: The present study describes the development and application of FRAX-based assessment guidelines in Ukraine. The thresholds can be used in the presence or absence of access to BMD and optimize the use of BMD where access is restricted.