Long-term PM2.5 exposure might predispose populations to SARS-CoV-2 infection and intervention policies might interrupt SARS-CoV-2 transmission and reduce the risk of COVID-19. We conducted an ecologic study across the United States, using county-level COVID-19 incidence up to 12 September 2020, to represent the first two surges in the U.S., annual average of PM2.5 between 2000 and 2016 and state-level facemask mandates and stay home orders. We fit negative binomial models to assess COVID-19 incidence in association with PM2.5 and policies. Stratified analyses by facemask policy and stay home policy were also performed. Each 1-µg/m3 increase in annual average concentration of PM2.5 exposure was associated with 7.56% (95% CI: 3.76%, 11.49%) increase in COVID-19 risk. Facemask mandates and stay home policies were inversely associated with COVID-19 with adjusted RRs of 0.8466 (95% CI: 0.7598, 0.9432) and 0.9193 (95% CI: 0.8021, 1.0537), respectively. The associations between PM2.5 and COVID-19 were consistent among counties with or without preventive policies. Our study added evidence that long-term PM2.5 exposure increased the risk of COVID-19 during each surge and cumulatively as of 12 September 2020, in the United States. Although both state-level implementation of facemask mandates and stay home orders were effective in preventing the spread of COVID-19, no clear effect modification was observed regarding long-term exposure to PM2.5 on the risk of COVID-19.
Keywords: COVID-19; facemasks; nation-wide study; particulate matter; stay-home orders.