The human transcription factor FOXO3 (a member of the 'forkhead' family of transcription factors) controls a variety of cellular functions that make it a highly relevant target for intervention in anti-cancer and anti-aging therapies. FOXO3 is a mostly intrinsically disordered protein (IDP). Absence of knowledge of its structural properties outside the DNA-binding domain constitutes a considerable obstacle to a better understanding of structure/function relationships. Here, I present extensive molecular dynamics (MD) simulation data based on implicit solvation models of the entire FOXO3/DNA complex, and accelerated MD simulations under explicit solvent conditions of a central region of particular structural interest (FOXO3120-530). A new graphical tool for studying and visualizing the structural diversity of IDPs, the Local Compaction Plot (LCP), is introduced. The simulations confirm the highly disordered nature of FOXO3 and distinguish various degrees of folding propensity. Unexpectedly, two 'linker' regions immediately adjacent to the DNA-binding domain are present in a highly extended conformation. This extended conformation is not due to their amino acid composition, but rather is caused by electrostatic repulsion of the domains connected by the linkers. FOXO3 is thus an IDP present in an unusually extended conformation to facilitate interaction with molecular interaction partners.
Keywords: DNA-binding; FOXO3; apoptosis; cancer; computational biology; intrinsically disordered protein; local compaction tool; longevity; molecular dynamics simulation; transcription factor.