Background: We have developed the computer-aided detection (CADe) system using an original deep learning algorithm based on a convolutional neural network for assisting endoscopists in detecting colorectal lesions during colonoscopy. The aim of this study was to clarify whether adenoma miss rate (AMR) could be reduced with CADe assistance during screening and surveillance colonoscopy.
Methods: This study was a multicenter randomized controlled trial. Patients aged 40 to 80 years who were referred for colorectal screening or surveillance at four sites in Japan were randomly assigned at a 1:1 ratio to either the "standard colonoscopy (SC)-first group" or the "CADe-first group" to undergo a back-to-back tandem procedure. Tandem colonoscopies were performed on the same day for each participant by the same endoscopist in a preassigned order. All polyps detected in each pass were histopathologically diagnosed after biopsy or resection.
Results: A total of 358 patients were enrolled and 179 patients were assigned to the SC-first group or CADe-first group. The AMR of the CADe-first group was significantly lower than that of the SC-first group (13.8% vs. 36.7%, P < 0.0001). Similar results were observed for the polyp miss rate (14.2% vs. 40.6%, P < 0.0001) and sessile serrated lesion miss rate (13.0% vs. 38.5%, P = 0.03). The adenoma detection rate of CADe-assisted colonoscopy was 64.5%, which was significantly higher than that of standard colonoscopy (53.6%; P = 0.036).
Conclusion: Our study results first showed a reduction in the AMR when assisting with CADe based on deep learning in a multicenter randomized controlled trial.
Keywords: Adenoma detection rate; Adenoma miss rate; Colonoscopy; Computer-aided detection; Deep learning.
© 2021. Japanese Society of Gastroenterology.