DeepGraphGO: graph neural network for large-scale, multispecies protein function prediction

Bioinformatics. 2021 Jul 12;37(Suppl_1):i262-i271. doi: 10.1093/bioinformatics/btab270.

Abstract

Motivation: Automated function prediction (AFP) of proteins is a large-scale multi-label classification problem. Two limitations of most network-based methods for AFP are (i) a single model must be trained for each species and (ii) protein sequence information is totally ignored. These limitations cause weaker performance than sequence-based methods. Thus, the challenge is how to develop a powerful network-based method for AFP to overcome these limitations.

Results: We propose DeepGraphGO, an end-to-end, multispecies graph neural network-based method for AFP, which makes the most of both protein sequence and high-order protein network information. Our multispecies strategy allows one single model to be trained for all species, indicating a larger number of training samples than existing methods. Extensive experiments with a large-scale dataset show that DeepGraphGO outperforms a number of competing state-of-the-art methods significantly, including DeepGOPlus and three representative network-based methods: GeneMANIA, deepNF and clusDCA. We further confirm the effectiveness of our multispecies strategy and the advantage of DeepGraphGO over so-called difficult proteins. Finally, we integrate DeepGraphGO into the state-of-the-art ensemble method, NetGO, as a component and achieve a further performance improvement.

Availability and implementation: https://github.com/yourh/DeepGraphGO.

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Neural Networks, Computer*
  • Proteins*

Substances

  • Proteins