Pharmacokinetics of 40 kDa Polyethylene glycol (PEG) in mice, rats, cynomolgus monkeys and predicted pharmacokinetics in humans

Eur J Pharm Sci. 2021 Oct 1:165:105928. doi: 10.1016/j.ejps.2021.105928. Epub 2021 Jul 12.

Abstract

Conjugation with polyethylene glycol (PEG), PEGylation, has been considered a useful tool to improve drug-like properties of novel small molecules and biologics in drug discovery. PEG40 or 40 kDa PEG is a double-branched PEG, routinely employed to improve the pharmacokinetics (PK) of therapeutics, including successful marketed products such as Pegasys® and Omontys®. However, less is known about the extent of contribution of PEG40 to the overall PK of the PEGylated product. Considering the half-life of PEG40 conjugated PEGylated products ranges from 1 to 14 days in human, this information is immensely valuable. After successfully developing a high sensitivity NMR based analytical method to quantitate PEG40 in mice serum after intravenous (IV) administration (Khandelwal et al., 2019), here, we extend its application to measure PEG40 in serum after IV administration and subcutaneous (SC) absorption in routinely employed non-clinical species in drug discovery, namely, mice, rats and cynomolgus monkeys. We utilized non-compartmental analysis and compartmental modeling to characterize the PK of PEG40 in these non-clinical species. Finally, we employed allometric scaling and Wajima (MRT-Css) method to predict the PK of PEG40 in human after IV administration and SC absorption. In general, our data shows that intrinsic PK parameters of PEG40 in mice, rats and cynomolgus monkeys are in the range of published literature values for PEG40-conjugated products, unless saturable clearance mechanisms are involved. We observed a bioavailability (F) of ~68% in CD-1 mice after SC administration of PEG40. In rats, the clearance (CL) and volume of distribution at steady state (Vss) after IV infusion of PEG40 were 0.079 mL/min/kg and 0.19 L/kg, respectively; and SC bioavailability was ~20%. In cynomolgus monkeys, after IV infusion, CL and Vss of PEG40 were 0.037 mL/min/kg and 0.20 L/kg, respectively; and SC bioavailability was ~69%. In addition, our findings indicate flip-flop kinetics of PEG40 in rodents, but not in cynomolgus monkeys. Finally, in human, intrinsic CL and Vss of PEG40 were projected to be 0.02 mL/min/kg (0.084 L/h) and 0.22 L/kg, respectively. This comprehensive report of PK of PEG40 in non-clinical species and its subsequent prediction in humans is expected to be useful to drug discovery and development scientists for efficient decision-making and optimal resource utilization.

Keywords: Bioavailability; Cyno; PEG; PEG40; Pharmacokinetics (PK); Rodents.

MeSH terms

  • Administration, Intravenous
  • Animals
  • Biological Availability
  • Half-Life
  • Humans
  • Macaca fascicularis
  • Mice
  • Polyethylene Glycols*
  • Rats

Substances

  • Polyethylene Glycols