The cerebellum is increasingly attracting scientists interested in basic and clinical research of neuromodulation. Here, we review available studies that used either transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) to examine the role of the posterior cerebellum in different aspects of social and affective cognition, from mood regulation to emotion discrimination, and from the ability to identify biological motion to higher-level social inferences (mentalizing). We discuss how at the functional level the role of the posterior cerebellum in these different processes may be explained by a generic prediction mechanism and how the posterior cerebellum may exert this function within different cortico-cerebellar and cerebellar limbic networks involved in social cognition. Furthermore, we suggest to deepen our understanding of the cerebro-cerebellar circuits involved in different aspects of social cognition by employing promising stimulation approaches that have so far been primarily used to study cortical functions and networks, such as paired-pulse TMS, frequency-tuned stimulation, state-dependent protocols, and chronometric TMS. The ability to modulate cerebro-cerebellar connectivity opens up possible clinical applications for improving impairments in social and affective skills associated with cerebellar abnormalities.
Keywords: Brain stimulation; Cerebellum; Emotion; Social cognition; TMS; tDCS.
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.