A synthetic tubular molecular transport system

Nat Commun. 2021 Jul 20;12(1):4393. doi: 10.1038/s41467-021-24675-8.

Abstract

Creating artificial macromolecular transport systems that can support the movement of molecules along defined routes is a key goal of nanotechnology. Here, we report the bottom-up construction of a macromolecular transport system in which molecular pistons diffusively move through micrometer-long, hollow filaments. The pistons can cover micrometer distances in fractions of seconds. We build the system using multi-layer DNA origami and analyze the structures of the components using transmission electron microscopy. We study the motion of the pistons along the tubes using single-molecule fluorescence microscopy and perform Langevin simulations to reveal details of the free energy surface that directs the motions of the pistons. The tubular transport system achieves diffusivities and displacement ranges known from natural molecular motors and realizes mobility improvements over five orders of magnitude compared to previous artificial random walker designs. Electric fields can also be employed to actively pull the pistons along the filaments, thereby realizing a nanoscale electric rail system. Our system presents a platform for artificial motors that move autonomously driven by chemical fuels and for performing nanotribology studies, and it could form a basis for future molecular transportation networks.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA / chemistry*
  • DNA / ultrastructure
  • Electricity
  • Kinetics
  • Microscopy, Electron, Transmission
  • Microscopy, Fluorescence
  • Motion*
  • Nanotechnology / instrumentation
  • Nanotechnology / methods*
  • Nanotubes / chemistry*
  • Nanotubes / ultrastructure
  • Surface Properties

Substances

  • DNA