Because they are safer and less costly than state-of-the-art Li-ion batteries, aqueous zinc-ion batteries (AZIBs) have been attracting more attention in stationary energy storage and industrial energy storage. However, the electrochemical reaction of H+ in all of the cathode materials of AZIBs has been puzzling until now. Herein, highly oriented VO2 monocrystals grown on a Ti current collector (VO2-Ti) were rationally designed as the research model, and such a well-aligned VO2 cathode also displayed excellent zinc-ion storage capability (e.g., a reversible capacity of 148.4 mAh/g at a current density of 2 A/g). To visualize the H+ reaction process, we used time-of-flight secondary-ion mass spectrometry. With the benefit of such a binder-free and conductor-free electrode design, a clear and intuitive reaction of H+ in a VO2 cathode is obtained, which is quite significant for unraveling the accurate reaction mechanism of VO2 in AZIBs.