Angular Resolution Enhancement of Diffusion MRI Data Using Inter-Subject Information Transfer

Comput Diffus MRI. 2016:2016:145-157. doi: 10.1007/978-3-319-28588-7_13. Epub 2016 Apr 9.

Abstract

Diffusion magnetic resonance imaging is widely used to investigate diffusion patterns of water molecules in the human brain. It provides information that is useful for tracing axonal bundles and inferring brain connectivity. Diffusion axonal tracing, namely tractography, relies on local directional information provided by the orientation distribution functions (ODFs) estimated at each voxel. To accurately estimate ODFs, data of good signal-to-noise ratio and sufficient angular samples are desired, but unfortunately, are not always practically available. In this paper, we propose to improve ODF estimation by using inter-subject correlation. Specifically, diffusion-weighted images acquired from different subjects, when transformed to the space of a target subject, can not only provide signal denoising with additional information, but also drastically increase the number of angular samples for better ODF estimation. This is largely because of the incoherence of the angular samples generated when the diffusion signals are reoriented and warped to the target space. Experiments on both synthetic data and real data show that our method can reduce noise-induced artifacts, such as spurious ODF peaks, and yield more coherent orientations.