Halorhodospira (Hlr.) halochloris is a unique phototrophic purple bacterium because it is a triple extremophile-the organism is thermophilic, alkalophilic, and halophilic. The most striking photosynthetic feature of Hlr. halochloris is that the bacteriochlorophyll (BChl) b-containing core light-harvesting (LH1) complex surrounding its reaction center (RC) exhibits its LH1 Qy absorption maximum at 1016 nm, which is the lowest transition energy among phototrophic organisms. Here we report that this extraordinarily red-shifted LH1 Qy band of Hlr. halochloris exhibits interconvertible spectral shifts depending on the electrostatic charge distribution around the BChl b molecules. The 1016 nm band of the Hlr. halochloris LH1-RC complex was blue-shifted to 958 nm upon desalting or pH decrease but returned to its original position when supplemented with salts or pH increase. Resonance Raman analysis demonstrated that these interconvertible spectral shifts are not associated with the strength of hydrogen-bonding interactions between BChl b and LH1 polypeptides. Furthermore, circular dichroism signals for the LH1 Qy transition of Hlr. halochloris appeared with a positive sign (as in BChl b-containing Blastochloris species) and opposite those of BChl a-containing purple bacteria, possibly due to a combined effect of slight differences in the transition dipole moments between BChl a and BChl b and in the interactions between adjacent BChls in their assembled state. Based on these findings and LH1 amino acid sequences, it is proposed that Hlr. halochloris evolved its unique and tunable light-harvesting system with electrostatic charges in order to carry out photosynthesis and thrive in its punishing hypersaline and alkaline habitat.
Keywords: Bacteriochlorophyll b-containing light-harvesting 1 reaction center; Halorhodospira halochloris; Interconvertible LH1 Q(y) shift; Purple photosynthetic bacteria; Triple extremophile.
Copyright © 2021 Elsevier B.V. All rights reserved.