Despite the efforts to achieve a consistent classification scheme based on the complete S1 gene, the genetic characterization of infectious bronchitis virus (IBV) is often performed on partial S1 regions due to economic and time constraints in the diagnostic routine. Sanger sequencing remains the most common and cost-effective option even if the analysis of samples where multiple field and vaccine strain populations coexist can lead to partial or misleading results. The present study aimed to evaluate the different diagnostic outcomes of three commonly used RT-PCR methods targeting two regions of the S1 gene. A possible bias in IBV detection and characterization was investigated in relation to the adopted method, the strain concentration as well as their ratio in mixed samples. Thirty samples were prepared by artificially mixing two vaccine strains, combined at different ratios and selected among four different IBV lineages, i.e. GI-1 (Mass), GI-13 (793/B), GI-19 (QX), GI-23 (Israeli Variant 2). Sequence analysis was conducted both manually and with bioinformatic methods. The result agreement among methods, replicates and analysis approaches was statistically evaluated. Consistent results emerged among the three assays, with a few discrepancies likely caused by primer affinity and target amount. This study confirms the complexity of IBV strain identification and highlights the importance of evaluating and updating the available diagnostic assays for a reliable detection of all circulating IBV strains.
Keywords: Infectious bronchitis virus; RT–PCR; assay comparison; bioinformatics; diagnosis; genotyping; sequencing.