Heat dissipation problem is the primary factor restricting the service life of an electronic component. The thermal conductivity of materials has become a bottleneck that hinders the development of the electronic information industry (such as light-emitting diodes, 5G mobile phones). Therefore, the research on improving the thermal conductivity of materials has a very important theoretical value and a practical application value. Whether the thermally conductive filler in polymer composites can form a highly thermal conductive pathway is a key issue at this stage. The carbon fiber/carbon felt (CF/C felt) prepared in the study has a three-dimensional continuous network structure. The nickel-coated carbon fiber/carbon felt (CF/C/Ni felt) was fabricated by an electroplating deposition method. Three-dimensional CF/C/Ni/epoxy composites were manufactured by vacuum-assisted liquid-phase impregnation. By forming connection points between the adjacent carbon fibers, the thermal conduction path inside the felt can be improved so as to improve the thermal conductivity of the CF/C/Ni/epoxy composite. The thermal conductivity of the CF/C/Ni/epoxy composite (in-plane K∥) is up to 2.13 W/(m K) with 14.0 wt % CF/C and 3.70 wt % Ni particles (60 min electroplating deposition). This paper provides a theoretical basis for the development of high thermal conductivity and high-performance composite materials urgently needed in industrial production and high-tech fields.
© 2021 The Authors. Published by American Chemical Society.