The impact of different complexes on the properties of β-carotene-loaded emulsions was investigated by measuring the droplet size, encapsulation efficiency, droplet morphology, and physical stability. The photo and thermal stability of β-carotene and its bioaccessibility during digestion were also analyzed. Comparing to the emulsions stabilized by other complexes, the emulsion stabilized by the high methoxyl pectin-rhamnolipid-pea protein isolate-curcumin (HMP-Rha-PPI-Cur) complex had the smallest droplet size (17.53 ± 0.15 μm) and the maximum encapsulation efficiency for curcumin (90.33 ± 0.03 %) and β-carotene (92.16 ± 0.01 %). The emulsion stabilized by the HMP-Rha-PPI-Cur complex exhibited better physical stability against creaming. The retention rate of β-carotene in the HMP-Rha-PPI-Cur complex-stabilized emulsion was 17.75 ± 0.02 and 33.64 ± 0.02 % after UV irradiation and thermal treatment. The HMP-Rha-PPI-Cur complex-stabilized emulsion also had a higher level of free fatty acid released (43.67 %) and higher bioaccessibility of β-carotene (32.35 ± 0.02 %).
Keywords: Bioaccessibility; Complex; Curcumin; Emulsion; Stability; β-Carotene.
Copyright © 2021 Elsevier Ltd. All rights reserved.