Molecular glues and proteolysis targeting chimeras (PROTACs) are promising new therapeutic modalities. However, the lack of specificity for molecular glue- or PROTAC-mediated proteolysis in cancer cells versus normal cells raises potential toxicity concerns that will likely limit their clinical applications. Here, we developed a general strategy to deliver immunomodulatory imide drug (IMiD)-based molecular glues and PROTACs to folate receptor α (FOLR1)-positive cancer cells. Specifically, we designed a folate-caged pomalidomide prodrug, FA-S2-POMA, by incorporating a folate group as a caging and guiding element and validated its degradation effect on its neo-substrates in FOLR1-positive cancer cells in a FOLR1-dependent manner. We also developed a folate-caged pomalidomide-based anaplastic lymphoma kinase (ALK) PROTAC, FA-S2-MS4048, which effectively degraded ALK fusion proteins in cancer cells, again in a FOLR1-dependent manner. This novel approach provides a generalizable platform for the targeted delivery of IMiD-based molecular glues and PROTACs to FOLR1-expressing cancer cells with the potential to ameliorate toxicity.