Precision imaging, utilizing molecular targeted agents, is an important tool in cancer diagnostics and guiding therapies. While there are limitations associated with single mode imaging probes, multimodal molecular imaging probes enabling target visualization through complementary imaging technologies provides an attractive alternative. However, there are several challenges associated with designing molecular probes carrying contrast agents for complementary multimodal imaging. Here, we propose a dual function antibody conjugate (DFAC) comprising an FDA approved photosensitizer Benzoporphyrin derivative (BPD) and a naphthalocyanine-based photoacoustic dye (SiNc(OH)) for multimodal infrared (IR) imaging. While fluorescence imaging, through BPD, provides sensitivity, complementing it with photoacoustic imaging, through SiNc(OH), provides a depth-resolved spatial resolution much beyond the optical diffusion limits of fluorescence measurements. Through a series of in vitro experiments, we demonstrate the development and utilization of DFACs for multimodal imaging and photodynamic treatment of squamous cell carcinoma (A431) cell line. The proposed DFACs have potential use in precision imaging applications such as guiding tumor resection surgeries and photodynamic treatment of residual microscopic disease thereby minimizing local recurrence. The data demonstrated in this study merits further investigation for its preclinical and clinical translation.
© 2021 American Society for Photobiology.