Background: Dystonia is a known neurological complication of certain medications; however, the mechanism behind such effects is often undetermined. Similarly, the clinical pharmacogenomic effects associated with various alleles of the cytochrome P450 family of proteins, and their role in acute dystonic reactions, are also presently unknown.
Case presentation: We describe a woman presenting with acute dystonic reactions to ondansetron, prochlorperazine, and metoclopramide followed by persistent focal dystonia. A similar family history was reported in her siblings and her father to prochlorperazine, drugs all metabolized by the cytochrome P450 2D6 (CYP2D6) enzyme. Pharmacogenomic testing indicated the patient was heterozygous for the intermediate metabolizer *41 allele (CYP2D6 2988G>A, NM_000106.6:c.985+39G>A, rs28371725). Her father was homozygous for this CYP2D6 *41 allele, and consequently, her siblings were obligate carriers.
Conclusions: The metabolism of ondansetron, metoclopramide, or prochlorperazine in patients with the *41 CYP2D6 allele has not been studied. In this family, clinical evidence implicates the *41 CYP2D6 allele as causing extrapyramidal adverse pharmacologic reactions. Patients with a family history of medication-induced dystonia involving these medications should be considered for pharmacogenomic testing, and patients carrying the *41 CYP2D6 allele should consider reduction or avoidance of CYP2D6-mediated medications to minimize the potential risk of adverse extrapyramidal effects.
Keywords: CYP2D6; Dystonia; Metoclopramide; Neurogenetics; Ondansetron; Pharmacogenetic; Prochlorperazine.
© 2021. The Author(s).