Bifunctional small molecules that mediate the degradation of extracellular proteins

Nat Chem Biol. 2021 Sep;17(9):947-953. doi: 10.1038/s41589-021-00851-1. Epub 2021 Aug 19.

Abstract

Targeted protein degradation (TPD) has emerged as a promising therapeutic strategy. Most TPD technologies use the ubiquitin-proteasome system, and are therefore limited to targeting intracellular proteins. To address this limitation, we developed a class of modular, bifunctional synthetic molecules called MoDE-As (molecular degraders of extracellular proteins through the asialoglycoprotein receptor (ASGPR)), which mediate the degradation of extracellular proteins. MoDE-A molecules mediate the formation of a ternary complex between a target protein and ASGPR on hepatocytes. The target protein is then endocytosed and degraded by lysosomal proteases. We demonstrated the modularity of the MoDE-A technology by synthesizing molecules that induce depletion of both antibody and proinflammatory cytokine proteins. These data show experimental evidence that nonproteinogenic, synthetic molecules can enable TPD of extracellular proteins in vitro and in vivo. We believe that TPD mediated by the MoDE-A technology will have widespread applications for disease treatment.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Asialoglycoprotein Receptor / metabolism*
  • Dinitrophenols / chemistry
  • Dinitrophenols / metabolism
  • Hep G2 Cells
  • Humans
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Molecular Structure
  • Small Molecule Libraries / chemistry
  • Small Molecule Libraries / pharmacology*

Substances

  • Asialoglycoprotein Receptor
  • Dinitrophenols
  • Small Molecule Libraries