Purpose: To evaluate the anatomical variations of dural venous sinuses in children with external hydrocephalus, proposing a radiological grading of progressive anatomic restriction to venous outflow based on brain phase-contrast magnetic resonance venography (PC-MRV); to evaluate the correlation between positional plagiocephaly and dural sinuses patency; and to compare these findings with a control group to ascertain the role of anatomical restriction to venous outflow in the pathophysiology of external hydrocephalus.
Methods: Brain MRI and PC MRV were performed in 97 children (76 males, 21 females) diagnosed with external hydrocephalus at an average age of 8.22 months. Reduction of patency of the dural sinuses was graded as 1 (stenosis), 2 (complete stop) and 3 (complete agenesis) for each transverse/sigmoid sinus and sagittal sinus. Anatomical restriction was graded for each patient from 0 (symmetric anatomy of patent dural sinuses) through 6 (bilateral agenesis of both transverse sinuses). Ventricular and subarachnoid spaces were measured above the intercommissural plane using segmentation software. Positional plagiocephaly (PP) and/or asymmetric tentorial insertion (ATI) was correlated with the presence and grading of venous sinus obstruction. These results were compared with a retrospective control group of 75 patients (35 males, 40 females).
Results: Both the rate (84.53% vs 25.33%) and the grading (mean 2.59 vs mean 0.45) of anomalies of dural sinuses were significantly higher in case group than in control group. In the case group, sinus anomalies were asymmetric in 59 cases (right-left ratio 1/1) and symmetric in 22. A significant association was detected between the grading of venous drainage alterations and diagnosis of disease and between the severity of vascular anomalies and the widening of subarachnoid space (SAS). Postural plagiocephaly (39.1% vs 21.3%) and asymmetric tentorial insertion (35.4% vs 17.3%) were significantly more frequent in the case group than in the control group. When sinus anomalies occurred in plagiocephalic children, the obstruction grading was significantly higher on the flattened side (p ≤ 0.001).
Conclusion: Decreased patency of the dural sinuses and consequent increased venous outflow resistance may play a role in the pathophysiology of external hydrocephalus in the first 3 years of life. In plagiocephalic children, calvarial flattening may impact on the homolateral dural sinus patency, with a possible effect on the anatomy of dural sinuses and venous drainage in the first months of life.
Keywords: Children; External hydrocephalus; Macrocrania; Positional plagiocephaly; Sigmoid sinus; Transverse sinus; Venous hypertension; Venous obstruction grading score.
© 2021. The Author(s).