IL-27 Mediates PD-L1 Expression and Release by Human Mesothelioma Cells

Cancers (Basel). 2021 Aug 9;13(16):4011. doi: 10.3390/cancers13164011.

Abstract

Malignant mesothelioma (MM) is a rare tumor with an unfavorable prognosis. MM genesis involves asbestos-mediated local inflammation, supported by several cytokines, including IL-6. Recent data showed that targeting PD-1/PD-L1 is an effective therapy in MM. Here, we investigated the effects of IL-6 trans-signaling and the IL-6-related cytokine IL-27 on human MM cells in vitro by Western blot analysis of STAT1/3 phosphorylation. The effects on PD-L1 expression were tested by qRT-PCR and flow-cytometry and the release of soluble (s)PD-L1 by ELISA. We also measured the concentrations of sPD-L1 and, by multiplexed immunoassay, IL-6 and IL-27 in pleural fluids obtained from 77 patients in relation to survival. IL-27 predominantly mediates STAT1 phosphorylation and increases PD-L1 gene and surface protein expression and sPD-L1 release by human MM cells in vitro. IL-6 has limited activity, whereas a sIL-6R/IL-6 chimeric protein mediates trans-signaling predominantly via STAT3 phosphorylation but has no effect on PD-L1 expression and release. IL-6, IL-27, and sPD-L1 are present in pleural fluids and show a negative correlation with overall survival, but only IL-27 shows a moderate albeit significant correlation with sPD-L1 levels. Altogether these data suggest a potential role of IL-27 in PD-L1-driven immune resistance in MM.

Keywords: IL-27; IL-6; PD-L1; STAT1/3; mesothelioma; microenvironment; overall survival; pleural effusion.