At present, little is known about the molecular imaging-based response assessment of prostate-specific membrane antigen (PSMA)-targeted radioligand therapy with 177Lutetium (177Lu-PSMA-617 RLT) in metastatic castration-resistant prostate cancer (mCRPC). Our study evaluated the response to RLT using both molecular imaging and biochemical response assessments, and their potential prediction of progression-free survival (PFS). Fifty-one consecutive patients given two cycles of RLT at 6-week intervals were analyzed retrospectively. 68Ga-PSMA-11 PET/CT was obtained about 2 weeks prior to the first and 4-6 weeks after the second cycle. Molecular imaging-based response using SUVpeak and tumor-to-liver ratio (TLR) was determined by modified PERCIST criteria. ∆TLR and ∆SUV were significantly correlated with ∆PSA (p < 0.001, each). After a median follow-up of 49 months, the median PFS (95% CI) was 8.0 (5.9-10.1) months. In univariate analysis, responders showing partial remission (PRPSA and PRTLR) had significantly (p < 0.001, each) longer PFS (median: 10.5 and 9.3 months) than non-responders showing either stable or progressive disease (median: 4.0 and 3.5 months). Response assessment using SUVpeak failed to predict survival. In multivariable analysis, response assessment using TLR was independently associated with PFS (p < 0.001), as was good performance status (p = 0.002). Molecular imaging-based response assessment with 68Ga-PSMA-11 PET/CT using normalization of the total lesion PSMA over healthy liver tissue uptake (TLR) could be an appropriate biomarker to monitor RLT in mCRPC patients and to predict progression-free survival (PFS) of this treatment modality.
Keywords: 68Ga-PSMA-11 PET/CT; Lutetium-177; PSMA-617; metastatic castration-resistant prostate cancer (mCRPC); molecular imaging-based response assessment; radioligand therapy; tumor-to-liver ratio (TLR).