Discovered more than a century ago, Alzheimer's disease (AD) is not only still present in our societies but has also become the most common dementia, with 50 million people worldwide affected by the disease. This number is expected to double in the next generation, and no cure is currently available to slow down or stop the disease progression. Recently, some advances were made due to the approval of the aducanumab treatment by the American Food and Drug Administration. The etiology of this human-specific disease remains poorly understood, and the mechanisms of its development have not been completely clarified. Several hypotheses concerning the molecular mechanisms of AD have been proposed, but the existing studies focus primarily on the two main markers of the disease: the amyloid β peptides, whose aggregation in the brain generates amyloid plaques, and the abnormally phosphorylated tau proteins, which are responsible for neurofibrillary tangles. These protein aggregates induce neuroinflammation and neurodegeneration, which, in turn, lead to cognitive and behavioral deficits. The challenge is, therefore, to create models that best reproduce this pathology. This review aims at gathering the different existing AD models developed in vitro, in cellulo, and in vivo. Many models have already been set up, but it is necessary to identify the most relevant ones for our investigations. The purpose of the review is to help researchers to identify the most pertinent disease models, from the most often used to the most recently generated and from simple to complex, explaining their specificities and giving concrete examples.
Keywords: Alzheimer’s disease; in cellulo; in vitro; in vivo models.