Behavioral traits like aggression, anxiety, and trainability differ significantly across dog breeds and are highly heritable. However, the neural bases of these differences are unknown. Here we analyzed structural MRI scans of 62 dogs in relation to breed-average scores for the 14 major dimensions in the Canine Behavioral Assessment and Research Questionnaire, a well-validated measure of canine temperament. Several behavior categories showed significant relationships with morphologically covarying gray matter networks and regional volume changes. Networks involved in social processing and the flight-or-fight response were associated with stranger-directed fear and aggression, putatively the main behaviors under selection pressure during wolf-to-dog domestication. Trainability was significantly associated with expansion in broad regions of cortex, while fear, aggression, and other "problem" behaviors were associated with expansion in distributed subcortical regions. These results closely overlapped with regional volume changes with total brain size, in striking correspondence with models of developmental constraint on brain evolution. This suggests that the established link between dog body size and behavior is due at least in part to disproportionate enlargement of later-developing regions in larger brained dogs. We discuss how this may explain the known correlation of increasing reactivity with decreasing body size in dogs.
Keywords: Canine; Dog; Evolution; Morphometry; Neuroimaging; Temperament.
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.