Examination of the differences between sulforaphane and sulforaphene in colon cancer: A study based on next-generation sequencing

Oncol Lett. 2021 Oct;22(4):690. doi: 10.3892/ol.2021.12951. Epub 2021 Aug 1.

Abstract

Sulforaphane and sulforaphene are isothiocyanate compounds derived from cruciferous vegetables that have demonstrated antiproliferative properties against colon cancer. However, the underlying mechanism of action of these two compounds has yet to be elucidated. The aim of the present study was to examine the effects of sulforaphane and sulforaphene on colon cancer using next-generation sequencing (NGS). The SW480 colon cancer cell line was cultured with 25 µmol/l sulforaphane or sulforaphene. Total RNA was extracted from the cells following 48 h of incubation with these compounds, and NGS was performed. Pearson's correlation and principal component analyses were performed on the NGS data in order to determine sample homogeneity followed by hierarchical clustering, chromosomal location, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. A total of 873 probes in the sulforaphene group were differentially expressed compared with the control group. Similarly, 959 probes in the sulforaphane group were differentially expressed compared with the control group. The differentially expressed genes were dispersed on the chromosomes, across 22 pairs of autosomes, as well as the X and Y chromosomes. GO and KEGG analyses demonstrated that both drugs affected the 'p53 signaling pathway', 'MAPK signaling pathway', 'FOXO signaling pathway' and 'estrogen signaling pathway', while 'Wnt signaling pathway' was enriched in the sulforaphane group, and 'ubiquitin mediated proteolysis' and 'estrogen signaling pathway' in the sulforaphene group. Thus, sulforaphane and sulforaphene exhibited similar biological activities on colon cancer cells. Sulforaphane and sulforaphene may be associated with Wnt and estrogen signaling, respectively.

Keywords: Wnt pathway; colon cancer; estrogen pathway; next-generation sequencing; sulforaphane; sulforaphene.

Grants and funding

This work was supported by The Research on Evaluation and Control Technology of Characteristic Agricultural Products Quality Safety and Nutritional Function (grant no. 2017JHZ010).