Somatic mutation in the KCNJ5 gene is a common driver of autonomous aldosterone overproduction in aldosterone-producing adenomas (APA). KCNJ5 mutations contribute to a loss of potassium selectivity, and an inward Na+ current could be detected in cells transfected with mutated KCNJ5. Among 223 unilateral primary aldosteronism (uPA) individuals with a KCNJ5 mutation, we identified 6 adenomas with a KCNJ5 p.Gly387Arg (G387R) mutation, previously unreported in uPA patients. The six uPA patients harboring mutant KCNJ5-G387R were older, had a longer hypertensive history, and had milder elevated preoperative plasma aldosterone levels than those APA patients with more frequently detected KCNJ5 mutations. CYP11B2 immunohistochemical staining was only positive in three adenomas, while the other three had co-existing multiple aldosterone-producing micronodules. The bioinformatics analysis predicted that function of the KCNJ5-G387R mutant channel could be pathological. However, the electrophysiological experiment demonstrated that transfected G387R mutant cells did not have an aberrantly stimulated ion current, with lower CYP11B2 synthesis and aldosterone production, when compared to that of the more frequently detected mutant KCNJ5-L168R transfected cells. In conclusion, mutant KCNJ5-G387R is not a functional KCNJ5 mutation in unilateral PA. Compared with other KCNJ5 mutations, the observed mildly elevated aldosterone expression actually hindered the clinical identification of clinical unilateral PA. The KCNJ5-G387R mutation needs to be distinguished from functional KCNJ5 mutations during genomic analysis in APA evaluation because of its functional silence.
Keywords: G387R mutation; KCNJ5; aldosterone-producing adenoma; unilateral primary aldosteronism.