Background: Harnessing helminth-based immunoregulation is a novel therapeutic strategy for many immune dysfunction disorders, including inflammatory bowel diseases (IBDs). We previously identified a small molecule peptide from Schistosoma japonicum and named it SJMHE1. SJMHE1 can suppress delayed-type hypersensitivity, collagen-induced arthritis and asthma in mice. In this study, we assessed the effects of SJMHE1 on dextran sulfate sodium (DSS)-induced acute and chronic colitis.
Methods: Acute and chronic colitis were induced in C57BL/6 mice by DSS, following which the mice were injected with an emulsifier SJMHE1 or phosphate-buffered saline. The mice were then examined for body weight loss, disease activity index, colon length, histopathological changes, cytokine expression and helper T (Th) cell subset distribution.
Results: SJMHE1 treatment significantly suppressed DSS-induced acute and chronic colitis, improved disease activity and pathological damage to the colon and modulated the expression of pro-inflammatory and anti-inflammatory cytokines in splenocytes and the colon. In addition, SJMHE1 treatment reduced the percentage of Th1 and Th17 cells and increased the percentage of Th2 and regulatory T (Treg) cells in the splenocytes and mesenteric lymph nodes of mice with acute colitis. Similarly, SJMHE1 treatment upregulated the expression of interleukin-10 (IL-10) mRNA, downregulated the expression of IL-17 mRNA and modulated the Th cell balance in mice with chronic colitis.
Conclusions: Our data show that SJMHE1 provided protection against acute and chronic colitis by restoring the immune balance. As a small molecule, SJMHE1 might be a novel agent for the treatment of IBDs without immunogenicity concerns.
Keywords: Acute and chronic colitis; Inhibit; SJMHE1; Schistosoma japonicum peptide.
© 2021. The Author(s).