Background: In people with multiple sclerosis (pwMS), lesions with a hyperintense rim (rim+) on Quantitative Susceptibility Mapping (QSM) have been shown to have greater myelin damage compared to rim- lesions, but their association with disability has not yet been investigated. Furthermore, how QSM rim+ and rim- lesions differentially impact disability through their disruptions to structural connectivity has not been explored. We test the hypothesis that structural disconnectivity due to rim+ lesions is more predictive of disability compared to structural disconnectivity due to rim- lesions.
Methods: Ninety-six pwMS were included in our study. Individuals with Expanded Disability Status Scale (EDSS) <2 were considered to have lower disability (n = 59). For each gray matter region, a Change in Connectivity (ChaCo) score, that is, the percent of connecting streamlines also passing through a rim- or rim+ lesion, was computed. Adaptive Boosting was used to classify the pwMS into lower versus greater disability groups based on ChaCo scores from rim+ and rim- lesions. Classification performance was assessed using the area under ROC curve (AUC).
Results: The model based on ChaCo from rim+ lesions outperformed the model based on ChaCo from rim- lesions (AUC = 0.67 vs 0.63, p-value < .05). The left thalamus and left cerebellum were the most important regions in classifying pwMS into disability categories.
Conclusion: rim+ lesions may be more influential on disability through their disruptions to the structural connectome than rim- lesions. This study provides a deeper understanding of how rim+ lesion location/size and resulting disruption to the structural connectome can contribute to MS-related disability.
Keywords: Quantitative Susceptibility Mapping; imaging biomarker; machine learning; multiple sclerosis; paramagnetic rim lesions; structural disconnectivity.
© 2021 The Authors. Brain and Behavior published by Wiley Periodicals LLC.