Survey of Micro/Nanofabricated Chemical, Topographical, and Compound Passive Wetting Gradient Surfaces

Langmuir. 2022 Jan 18;38(2):605-619. doi: 10.1021/acs.langmuir.1c00612. Epub 2021 Sep 9.

Abstract

Surface wetting gradients are desirable due to their ability to passively transport liquid droplets without the aid of gravity. Such surfaces can be prepared through topographical or chemical methods or a compound approach involving both methods. By altering the surface free energy across a surface, a droplet that contacts such a surface will experience an actuation force toward the hydrophilic region. Such transport properties make these surfaces attractive for a range of applications from thermal management to microfluidics to the investigation of biomolecular interactions. This paper reviews passive wetting gradients that have been demonstrated over the last three decades, focusing on the types of surfaces that have been developed to date along with the materials that have been used. The corresponding wetting ranges and physical lengths over which droplet mobility has been achieved on these various types of gradient surfaces are compared to guide future developments.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Hydrophobic and Hydrophilic Interactions
  • Microfluidics*
  • Wettability