The organization of rat liver ribosomal DNA (rDNA) as matrix-attached DNA loops was examined using a protocol which fractionates chromatin from discrete regions of DNA loops. Southern blot analysis of matrix-attached and solubilized chromatin DNA fragments demonstrated that rDNA is associated with the matrix via its 5' and 3' nontranscribed spacer sequences (NTS). Although the 45 S rRNA coding sequences were approximately threefold enriched in matrix preparations, the recovery of this DNA (unlike the NTS) was dependent on the extent of nuclease digest and proportional to the length of the matrix-attached DNA fragments. The data suggest that rDNA is organized as matrix-attached DNA loops and only the NTS are directly involved in matrix binding. Further, we demonstrated that while the kinetics and extent of nuclease digestion were similar in all regions of the DNA loops, the nuclease digestion pattern of bulk nuclear and matrix DNA showed a typical nucleosome organization, but the rDNA fragments retained with the nuclear matrix did not.