Our ability to quickly detect and respond to harmful environmental stimuli is vital for our safety and survival. This inherent acute pain detection is a "gift" because it both protects our body from harm and allows healing of damaged tissues [1]. Damage to tissues from trauma or disease can result in distorted or amplified nociceptor signaling and sensitization of the spinal cord and brain (Central Nervous System; CNS) pathways to normal input from light touch mechanoreceptors. Together, these processes can result in nagging to unbearable chronic pain and extreme sensitivity to light skin touch (allodynia). Unlike acute protective pain, chronic pain and allodynia serve no useful purpose and can severely reduce the quality of life of an affected person. Chronic pain can arise from impairment to peripheral neurons, a phenomenon called "peripheral neuropathic pain." Peripheral neuropathic pain can be caused by many insults that directly affect peripheral sensory neurons, including mechanical trauma, metabolic imbalance (e.g., diabetes), autoimmune diseases, chemotherapeutic agents, viral infections (e.g., shingles). These insults cause "acquired" neuropathies such as small-fiber neuropathies, diabetic neuropathy, chemotherapy-induced peripheral neuropathy, and post herpetic neuralgia. Peripheral neuropathic pain can also be caused by genetic factors and result in hereditary neuropathies that include Charcot-Marie-Tooth disease, rare channelopathies and Fabry disease. Many acquired and hereditary neuropathies affect the skin, our largest organ and protector of nearly our entire body. Here we review how cutaneous nociception (pain perceived from the skin) is altered following diseases that affect peripheral nerves that innervate the skin. We provide an overview of how noxious stimuli are detected and encoded by molecular transducers on subtypes of cutaneous afferent endings and conveyed to the CNS. Next, we discuss several acquired and hereditary diseases and disorders that cause painful or insensate (lack of sensation) cutaneous peripheral neuropathies, the symptoms and percepts patients experience, and how cutaneous afferents and other peripheral cell types are altered in function in these disorders. We highlight exciting new research areas that implicate non-neuronal skin cells, particularly keratinocytes, in cutaneous nociception and peripheral neuropathies. Finally, we conclude with ideas for innovative new directions, areas of unmet need, and potential opportunities for novel cutaneous therapeutics that may avoid CNS side effects, as well as ideas for improved translation of mechanisms identified in preclinical models to patients.
Keywords: Cutaneous; Keratinocytes; Neuropathic pain; Neuropathy; Nociceptor; Skin.
Copyright © 2021 Elsevier B.V. All rights reserved.