The Importance of Interfaces in Multi-Material Biofabricated Tissue Structures

Adv Healthc Mater. 2021 Nov;10(21):e2101021. doi: 10.1002/adhm.202101021. Epub 2021 Sep 12.

Abstract

Biofabrication exploits additive manufacturing techniques for creating 3D structures with a precise geometry that aim to mimic a physiological cellular environment and to develop the growth of native tissues. The most recent approaches of 3D biofabrication integrate multiple technologies into a single biofabrication platform combining different materials within different length scales to achieve improved construct functionality. However, the importance of interfaces between the different material phases, has not been adequately explored. This is known to determine material's interaction and ultimately mechanical and biological performance of biofabricated parts. In this review, this gap is bridged by critically examining the interface between different material phases in (bio)fabricated structures, with a particular focus on how interfacial interactions can compromise or define the mechanical (and biological) properties of the engineered structures. It is believed that the importance of interfacial properties between the different constituents of a composite material, deserves particular attention in its role in modulating the final characteristics of 3D tissue-like structures.

Keywords: bioinks; composites; hybrid bioprinting; materials interfaces; multitechnology biofabrication; regenerative medicine; reinforcement.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Bioprinting*
  • Printing, Three-Dimensional
  • Tissue Engineering
  • Tissue Scaffolds