Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is still spreading around the globe causing immense public health and socioeconomic problems. As the infection can progress with mild symptoms that can be misinterpreted as the flu, self-testing methods that can positively identify SARS-CoV-2 are needed to effectively track and prevent the transmission of the virus. In this work, we report a point-of-care toolkit for multiplex molecular diagnosis of SARS-CoV-2 and influenza A and B viruses in saliva samples. Our assay is physically programmed to run a sequence of chemical reactions on a paper substrate and internally generate heat to drive these reactions for an autonomous extraction, purification, and amplification of the viral RNA. Using our assay, we could reliably detect SARS-CoV-2 and influenza viruses at concentrations as low as 50 copies/μL visually from a colorimetric analysis. The capability to autonomously perform a traditionally labor-intensive genetic assay on a disposable platform will enable frequent, on-demand self-testing, a critical need to track and contain this and future outbreaks.
Keywords: SARS-CoV-2; influenza virus; isothermal PCR amplification; multiplexed molecular diagnosis; point-of-care RNA test; programmed paper microfluidics.