To capitalize on investments in evidence-based practices, technology is needed to scale up fidelity assessment and supervision. Stakeholder feedback may facilitate adoption of such tools. This evaluation gathered stakeholder feedback and preferences to explore whether it would be fundamentally feasible or possible to implement an automated fidelity-scoring supervision tool in community mental health settings. A partially mixed, sequential research method design was used including focus group discussions with community mental health therapists (n = 18) and clinical leadership (n = 12) to explore typical supervision practices, followed by discussion of an automated fidelity feedback tool embedded in a cloud-based supervision platform. Interpretation of qualitative findings was enhanced through quantitative measures of participants' use of technology and perceptions of acceptability, appropriateness, and feasibility of the tool. Initial perceptions of acceptability, appropriateness, and feasibility of automated fidelity tools were positive and increased after introduction of an automated tool. Standard supervision was described as collaboratively guided and focused on clinical content, self-care, and documentation. Participants highlighted the tool's utility for supervision, training, and professional growth, but questioned its ability to evaluate rapport, cultural responsiveness, and non-verbal communication. Concerns were raised about privacy and the impact of low scores on therapist confidence. Desired features included intervention labeling and transparency about how scores related to session content. Opportunities for asynchronous, remote, and targeted supervision were particularly valued. Stakeholder feedback suggests that automated fidelity measurement could augment supervision practices. Future research should examine the relations among use of such supervision tools, clinician skill, and client outcomes.
Keywords: Artificial intelligence; Cognitive behavioral therapy; Community mental health; Fidelity; Machine learning; Supervision; Technology.
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.