Exposure to ionizing radiation following a nuclear or radiological incident results in potential acute radiation syndromes causing sequelae of multi-organ injury in a dose- and time-dependent manner. Currently, medical countermeasures against radiation injury are limited, and no biomarkers have been approved by regulatory authorities. Identification of circulating plasma biomarkers indicative of radiation injury can be useful for early triage and injury assessment and in the development of novel therapies (medical countermeasures). Aims of this study are to (1) identify metabolites and lipids with consensus signatures that can inform on mechanism of injury in radiation-induced multi-organ injury and (2) identify plasma biomarkers in non-human primate (NHP) that correlate with tissues (kidney, liver, lung, left and right heart, jejunum) indicative of radiation injury, assessing samples collected over 3 wk post-exposure to 12 Gy partial body irradiation with 2.5% bone marrow sparing. About 180 plasma and tissue metabolites and lipids were quantified through Biocrates AbsoluteIDQ p180 kit using liquid chromatography and mass spectrometry. System-wide perturbations of specific metabolites and lipid levels and pathway alterations were identified. Citrulline, Serotonin, PC ae 38:2, PC ae 36:2, and sum of branched chain amino acids were identified as potential biomarkers of radiation injury. Pathway analysis revealed consistent changes in fatty acid oxidation and metabolism and perturbations in multiple other pathways.
Copyright © 2021 Health Physics Society.