We have performed fully atomistic molecular dynamics simulations of the intracellular domain of a model of the GABAA receptor with and without the GABA receptor associated protein (GABARAP) bound. We have also calculated the electrostatic potential due to the receptor, in the absence and presence of GABARAP. We find that GABARAP binding changes the electrostatic properties around the GABAA receptor and could lead to increased conductivity of chloride ions through the receptor. We also find that ion motions that would result in conducting currents are observed nearly twice as often when GABARAP binds. These results are consistent with data from electrophysiological experiments.
Keywords: GABAA receptor; GABARAP; electrostatic potential; ionic conductance; ligand-gated ion channels.
© 2021 The Authors. Proteins: Structure, Function, and Bioinformatics published by Wiley Periodicals LLC.