A strategy for covalent modification of monoclonal antibodies utilizing the oxidized oligosaccharide moieties on the molecule was evaluated and compared to more conventional methods. As judged by quantitative in vitro measurements, a monoclonal antibody conjugate prepared via the oligosaccharides retained the homogeneous antigen binding property and affinity of the unmodified antibody. In contrast, conjugates of the same antibody, modified to the same degree on either lysines or aspartic and glutamic acid side chains, were heterogeneous in their antigen binding and had lowered affinity. In vivo biodistribution and nuclear-imaging experiments were also performed with a second monoclonal antibody and a tumor xenograft model. Antibodies modified on the oligosaccharides with either a peptide labeled with iodine-125 or a diethylenetriaminepentaacetic acid chelate with indium-111 localize into target tumors more efficiently than the same antibody radiolabeled on either tyrosines or lysines. These in vivo results, when compared to those reported in the literature for conventionally modified antibodies, suggest that oligosaccharide modification of monoclonal antibodies is a preferred method of preparing conjugates.